⏰ **LAST CHANCE! Save BIG on select CO2Meter products. Use “BFCM20” at checkout. Valid until 11/28** 📣


Carbon Dioxide (CO2) Purity Grade Chart

food grade co2 beverage grade co2

One of the things we love to do at CO2Meter is talk about the new applications customers have shared with us by phone or email. We always say “now we have heard it all”, and then, someone calls with a new application.

The one question we rarely hear from customers but that is hyper-critical to success is “what food, beverage, or medical grade CO2 should I be using”. That’s right – there are different grades or “purities” of CO2 that are produced and used.

Table: CO2 Purity Grades

Research 99.999% 0.001%
Super-critical Fluid 99.998% 0.002%
Laser 99.95% 0.05%
Anaerobic 99.95% 0.05%
Beverage 99.9% 0.1%
Food 99.9% 0.1%
Bone Dry 99.8% 0.2%
Medical 99.5% 0.5%
Industrial 99.5% 0.5%


This table lists CO2 purity in descending order.

The biggest difference between the grades are the amounts and kinds of impurities that are allowable in the CO2.  

As you ascend the list the amount of impurities like ammonia, benzene, oxygen, carbon monoxide, and others allowed to be in specific grades of gas are lessened. While nobody wants to ingest benzene or ammonia those hydrocarbons are far more dangerous when working with lasers than with lagers.

Does Beverage Grade CO2 Matter?

Specialty gases have become key components for almost every industry, including beverage, restaurant, scientific, incubation, agriculture, safety and others. The grade or "purity" of the gases can be influenced by elements such as oxygen, moisture content, total hydrocarbons, nitrogen, and carbon monoxide - to name a few.

In the U.S. specifically, beverage grade CO2 will almost always be at least 99.90% pure; many other molecules can compromise the other 0.10% (1,000 parts per million), including water, oxygen, and hydrocarbons such as benzene, acetaldehyde, and other molecules. 

Here are a few other helpful hints to ensure you are gaining the highest grade CO2 when looking at beverage application:

  • For carbonated beverages, specify and use either ISBT Purity Grade beverage grade CO2 or Food-Grade CO2.
  • Suppliers should provide a certificate of analysis (COA) upon delivery of CO2 to document that the actual lot meets the required purity specifications.
  • Periodically audit the quality management practices of your CO2 supplier and request that they verify their quality through an independent ISO-certified lab.
  • Ask your supplier what proportion of their CO2 supply derives from ethanol production, petrochemical production, or other sources (this may allow you to assess supply risk).
  • Ask your supplier what steps they are taking to ensure that beverage grade CO2 quality and quantity requirements will be met in the event of supplier feedstock source changes.

Then ask yourself these simple questions:

  1. Do you know what grade gas you are receiving from your gas supplier? 
  2. Have you ever thought to ask them?
  3. IS your gas supplier providing you with a certificate of purity?

Food Grade vs. Beverage Grade CO2

Food grade CO2 is tested to a different standard than beverage grade CO2. The standards and criteria for each grade of CO2 are established by the United States Pharmacopeia (USP) and the Food and Drug Administration (FDA) in the United States. For example, the USP sets specific purity standards for food grade CO2, which must meet stringent requirements to ensure that it is safe for use in food processing, storage, and transportation. These standards include limits on impurities, such as heavy metals, pesticides, and microbiological contaminants.

In the EU, food grade CO2 is regulated by the European Commission (EC) who states a minimum purity criteria for food grade gases such as CO2, N2 and O2.  Each having to adhere to a number code and must be of high purity.  

In contrast, beverage grade CO2 must meet specific standards established by the beverage industry to ensure that it does not contain any off-flavors, odors, or impurities that could affect the taste or appearance of the final product.

CO2 purity for beverage grade gases is now also mandated by the Food and Drug Administration. The FDA regulations allows for the other .09% of the gas to be made up of other hydrocarbons.

Therefore, while both food grade CO2 and beverage grade CO2 are high-purity gases, they are tested to different standards to meet the unique requirements of their intended applications.

What is Medical Grade CO2 used for?

When it comes to using medical grade carbon dioxide these applications typically encompass hospitals, scientific research, or laboratory discoveries. For instance, medical grade CO2 is used for:

  • Respiratory therapy: used to facilitate breathing and treat respiratory conditions.
  • Laparoscopic surgery: used to create a pneumoperitoneum, which inflates the abdominal cavity to provide a better view of the surgical site.
  • Cryotherapy: used to freeze and destroy abnormal tissue, such as warts, moles, and tumors.
  • Dental procedures: used to dry and isolate the treatment area, such as during root canal therapy or tooth extraction.
  • Dermatology: used to treat various skin conditions, such as acne, rosacea, and wrinkles.
  • Endoscopy: used to insufflate the gastrointestinal tract, providing a clearer view of the internal organs.
  • Hyperbaric oxygen therapy: used to pressurize the chamber and deliver oxygen to patients with various medical conditions.

Why is CO2 Purity Grade Important?

The importance of using the correct carbon dioxide purity grade stems from its potential impact on the properties and characteristics of the materials or substances with which it interacts. Carbon dioxide is a widely used gas in various applications, such as analytical chemistry, environmental monitoring, and medical procedures. In these contexts, the purity of CO2 plays a critical role in ensuring accurate measurements, reliable data, and safe operations.

The presence of impurities, even in trace amounts, can cause interference or contamination, affecting the quality and reliability of the results. Furthermore, certain impurities may react with the materials or substances, causing undesirable changes or damage.

For example, in laser applications the impact of the speed and the quality of the laser cut is extremely dependent upon the quality and purity of the gas. Impure oxygen can have a huge impact on the final product produced by the laser cut. The two main gases which need to be incorporated are oxygen and nitrogen, with purities of 99.95% stated to increase the speed and productivity.

Industrial applications like welding utilize 99.5% pure CO2. In welding, higher purity CO2 produces better welds because the process is heating less impurities in the process. Those impurities have been found to produce less stable welds.

CO2 Purity Grade Tips

If you are unsure of your gas quality or call your suppliers analysis in to question you can contact an outside laboratory for third party testing services. You can contact airbornelabs.com as an example.

Also consider testing the water in your process as well. Brewers and vintners are keenly aware that water purity is just as important to end quality as the gas that they are using in your process. In fact, hydrocarbons like benzene are more likely to appear in the water in your process then in the gas you are using.          

If you are interested in further details about beverage gas and its chemical composition please visit the International Society of Beverage Technologist, which CO2Meter, Inc. is a member of, at bevtech.org.

Gases have become such an integral part of many industries and applications, and understanding the importance of gas purity, trace-ability in its use, and specific regulation/standards is crucial. 


Older Post Newer Post